ASCENDING VS DESCENDING FOR EOS-PM

- PRESENT PLAN IS FOR EOS-AM IN A DESCENDING ORBIT THAT CROSSES THE EQUATOR AT 10:30 AM AND EOS-PM IN AN ASCENDING ORBIT THAT CROSSES THE EQUATOR AT 1:30 PM
- BOTH ORBITS GIVE GOOD COVERAGE OF THE NORTHERN HEMISPHERE OCEANS
 - FOR THE AM MISSION, SCENE SUN-TIME GOES FROM ~NOON TO 10:30 AM GOING FROM THE NORTH TO THE EQUATOR
 - FOR THE PM MISSION, SCENE SUN-TIME GOES FROM 1:30 PM TO ~NOON GOING FROM EQUATOR NORTHWARD
 - FIGURE 1 SHOWS THIS RELATIONSHIP
- NEITHER THE AM DESCENDING NOR THE PM ASCENDING ORBITS GIVE GOOD SOUTHERN HEMISPHERE OCEAN COVERAGE
 - FOR THE AM MISSION, SCENE SUN-TIME GOES FROM 10:30 AM TO ~9 AM GOING FROM THE EQUATOR SOUTHWARD
 - FOR THE PM MISSION, SCENE SUN-TIME GOES FROM ~3:00 PM TO 1:30 PM GOING FROM THE SOUTH TOWARDS THE EQUATOR
 - FIGURE 2 SHOWS THIS RELATIONSHIP
- SUGGEST THAT BOTH EOS-AM AND EOS-PM BE DESCENDING
 - AM HAS SAME GOOD NORTHERN OCEAN COVERAGE
 - PM HAS GOOD SOUTHERN OCEAN COVERAGE SCENE SUN-TIME GOES FROM 1:30 PM TO ~NOON GOING FROM THE EQUATOR SOUTHWARD
 - FIGURES 3 AND 4 SHOWS THIS RELATIONSHIP

GLINT AND OTHER CONSIDERATIONS

- EACH MODIS ACHIEVES GLOBAL COVERAGE IN TWO DAYS WITH A SCAN ANGLE THAT GOES FROM 55 DEG. ON ANTI-SUN SIDE OF ORBIT TO 25 DEG. ON THE SUNNY SIDE (SEE FIG. 5)
 - AM BETTER IN NORTHERN HEMISPHERE
 - PM BETTER IN SOUTHERN HEMISPHERE
 - BOTH GOOD IN THE TROPICS
- USING BOTH MODIS INSTRUMENTS, GET GLOBAL COVERAGE IN ONE DAY WITH A SCAN ANGLE THAT GOES FROM 55 DEG. ON ANTI-SUN SIDE OF ORBIT TO 13 DEGREES ON SUNNY SIDE (SEE FIG. 6)
 - GOOD FOR TROPICS
 - CANNOT GET ONE-DAY GLOBAL COVERAGE WITH PRESENT ASCENDING/DESCENDING ORBITS AND ONLY 13 DEGREES ON SUNNY SIDE (SEE FIG. 7)
- ALLOWS SAME-DAY VIEWING BY PM OF ANY SCENE VIEWED BY AM
 - GIVES TWO DIFFERENT SOLAR ILLUMINATIONS OF THE SCENE

DISADVANTAGES OF DESCENDING PM

- EOS-PM WOULD FLY "BACKWARDS" SO THAT MODIS WOULD HAVE SAME VIEWS TO EARTH. SPACE AND SUN
 - LINE-TO-LINE RELATIONSHIP REVERSED FROM AM TO PM
 - MAY BE SMALL EARTH ROTATION EFFECTS IN MODIS FOCAL PLANE
- DRAG-MAKEUP PROPULSION WOULD REQUIRE EITHER:
 - 180 DEGREE MANEUVER OR
 - THE PLACEMENT OF A JET ON SAME END AS MODIS
- WOULD NEED TO CHANGE PHASE-B STUDY

MODIS AM & PM 'GLINT-FREE'
Figure 1

NORTHERN HEMISHPERE ORBIT-SUN RELATIONS AM DECENDING, PM ASCENDING

MODIS AM & PM 'GLINT-FREE'

Figure 2

SOUTHERN HEMISHPERE
ORBIT-SUN RELATIONS
AM DECENDING PM ASCENDING

MODIS AM & PM 'GLINT-FREE'

Figure 3

BOTH HEMISHPERES ORBIT-SUN RELATIONS AM DECENDING. PM DECENDING

MODIS AM & PM 'GLINT-FREE'

Figure 4

BOTH HEMISHPERES ORBIT-SUN RELATIONS AM DECENDING, PM DECENDING

Figure 5

2-DAY GLOBAL COVERAGE MEDIUM GLINT

MODIS AM & PM +55 TO -13 SCAN

Figure 6

1-DAY GLOBAL COVERAGE LOW GLINT AM & PM DESCENDING

MODIS AM & PM +55 TO -13 SCAN

Figure 7

1-DAY COVERAGE LOW GLINT AM DESCENDING, PM ASCENDING